Yesterday AMD formally unveiled and shipped the AMD-760MP chipset. Right now there is one and only one motherboard using it, the ritzy Tyan Thunder K7, which runs about $550 minimum. (Wholesale cost on it is rumored to be $500.) Considering its 64-bit PCI slots, two built-in 3Com NICs, onboard ATI video, onboard Adaptec SCSI, and four available DIMMs, that’s not a half-bad price. It’s obviously not a hobbyist board. This dude’s intended to go in servers.
At any rate, reviews are all over the place and the quality varies. Far and away the best I found was at Ace’s Hardware, where he tested the things people actually likely to buy this board would do with it: workstation-type stuff.

Anand does his usual 10 pages’ worth of butt-kissing and he’s living under the delusion that people will buy this board to play Quake. However, he does test the board with plain old Thunderbird and Duron CPUs (they work, but AMD won’t support that configuration). Skip ahead to page 11 after reading the story at Ace’s. His tests suggest that for some purposes, a dual Duron-850 can be competitive with a dual P3-933. That information is more interesting than it is useful at this point in time, but we’ve all been curious about dual Duron performance, so if and when an inexpensive AMD SMP board becomes available, we have some idea what we’ll be able to do with it.

All the usual hardware sites put in their two cents’ worth; by the time I read Ace’s and Anand’s and Tom’s reviews I stopped learning anything new.

Some of it bordered on ridiculous. One site (I forget which) observed that the AMD 766 northbridge looks just like a K6-2 and said they must have made it look that way just to remind us where the Athlon came from. Whatever. The AMD 766 northbridge and the K6-2 use the same heat spreader. The intention is to keep the chip cool. It’s not there just for looks–the chip runs hot. But that’s the kind of quality information we get from most hardware sites these days, sadly.

More immediately useful and interesting, but not yet available, is the nVidia nForce chipset. You can read about it at Tom’s and elsewhere. This is technically nVidia’s second chipset, their first being the chipset in Microsoft’s X-Box. This chipset is a traditional two-chip solution, linked by AMD’s high-speed HyperTransport. It includes integrated sound better than anything Creative Labs or Cirrus Logic currently offer (now we know what nVidia was doing with those engineers they were hiring from Aureal) and integrated GeForce 2MX video connected via a high-speed port that would be equivalent to AGP 6X, if such a thing existed. And nVidia pairs up DDR controllers to give dual-channel, 128-bit memory with a bandwidth of 4.256 GB/sec. Suddenly DDR provides greater bandwidth than Rambus in addition to lower latency.

Just for good measure, the chipset includes Ethernet too.

What’s all this mean? High-speed motherboards with everything integrated (and with integrated peripherals definitely worth using) for around 200 bucks. By the end of the summer, last summer’s monster PC will be integrated onto two chips and priced for building PCs at the $600-$800 price point.

This summer’s computer revolution won’t be Windows XP.

And, in something not really related, here’s something you probably missed, unfortunately. Start rubbing your hands together if you enjoy the Mac-PC or Intel-AMD wars. This is a hard benchmark comparing AMD Athlon, Intel P3, and Motorola PowerPC architectures and their relative speed. The methodology: under Linux, cross-compile a Linux kernel for the SPARC architecture (compiling native isn’t a fair comparison; this way they’re all creating identical code and therefore doing the same work, or as close to it as you’re gonna get). You know those claims that a Mac is twice as fast as an equivalent-speed Pentium III running Photoshop? I always countered that with Microsoft Office benchmarks, where a Mac is about 1/4 the speed of a PC, at best, when doing a mail merge. Neither is a fair test. This benchmark resembles one.

Anyway… Yes, a G4 is faster than the equivalently clocked Pentium III. How much faster? Roughly 10 percent. And an Athlon turns out to be about 20 percent slower than the equivalent P3. Of course, the Athlon reaches clock speeds the P3 never will, and the Athlon is also much more than 20 percent cheaper than the equivalently-clocked P3, so who really cares?

This still isn’t a totally fair comparison of CPU architecture, since chipsets vary (and it’s entirely possible that the difference between the P3 and the Athlon in speed is due to chipset quality), but if indeed the G4 was twice as fast as the P3, it would surely outperform it by better than 10 percent in this test. But it’s a decent comparison of real-world performance, because it doesn’t matter how much better your CPU is if it’s burdened by a chipset that doesn’t show up to play on game day.

Most telling is the end, where he gives the cost per speed unit. AMD wins that chart handily.

Enough of my babble. Read all about it here.

More Like This: AMD Hardware